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Basics	of	Electric	Circuits	

1 Alternating Current Circuits  

1.1 Using Phasors 

There are practical and economic reasons justifying that electrical generators produce 

emf with alternating and sinusoidal form. Therefore, the generators that supply the 

power grid are AC generators. In these cases voltages, currents and other electrical 

variables are also sinusoidal waveforms. As an example consider again the RLC serially 

connected circuit shown in Figure 1  but now the emf is a sinusoidal waveform that is 

represented by the relation: ���� = ����	
�	�
� + ��	
(1) 
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Figure 1 – RLC serial circuit. 

 

Figure 2 – Evolutions of the current and of the voltages at the 

resistor, at the coil and at the capacitor terminals. 

 

Solving the circuit, one can verify the evolutions of the current and voltages. In steady 

state regime – the period after transients have vanished – all the variables are 

represented by a sinusoidal function (2) similar to the relation (1). ���� = ����	
�	�
� + ���	
(2) 

All these waveforms have the same angular frequency 
, but present different 

amplitudes ���� and different phases ��. In many situations all one needs to know 

about the solution of a circuit is it’s steady state regime, this meaning: the amplitude 

and the phase of each current or voltage in the circuit. One way to determine the 

steady state solution is to put a general sinusoidal waveform in the equations that 

describe the circuit and solve the system of equations in order to determine all the 

amplitudes and phase angles. This methodology is not friendly to user, as you can 
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verify trying to solve the simple circuit shown in Figure 1.Instead we use an adequate 

methodology.  

The idea is to represent a sinusoidal waveform by a complex number – a phasor. So 

assume the relation (3) and its representation on Argand plane shown on Figure 3. The 

instantaneous value, ����, is equal to the projection of the phasor on real axis. As the 

angular speed, 
, is the same for all currents and voltages only the phase angles, �� 

are important. Accordingly, one can represent the sinusoidal waveform using a 

complex number as indicated by relation (4). 

 

Figure 3 – Phasor representation on Argand plane  

 

���� = ���� 	
��
� + ��� = ��[��������������]	
(3) 

���� = ���� 	
��
� + ��� 				⇔ 				 �� = ��������]	
(4) 

For practical reasons it is usual to write phasor amplitude by 

���� = √2�!"#												�!"# = $ 12&' �(()
* +�
��	

(5) 

where it is used the root medium square value of the sinusoidal waveform. 

In sinusoidal steady state regime the ideal elements are represented  by the following 

relations: 

Resistor     , = �-					 ⇔ 						 	./ = �0 ̅ = 2̅!0 ̅
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Coil      , = 3 +-+� 				⇔ 							 ./ = 4
30 ̅ = 2̅50  ̅
Capacitor    - = 6 +,+� 				⇔ 							 ./ = −4 1
6 0 ̅ = 2̅80 ̅
The differential equations that describe the behavior of the circuit are transformed in 

algebraic equations that are easier to solve. The coefficient relating the voltage and 

the current is a complex number designated by impedance. As an example, the serial 

circuit shown on Figure 1 1 when in steady state regime is represented by the 

equation: �� = �2���! + 2̅5 + 2̅8�0 ̅ = 2̅9:0	̅											2̅9: = ;� + 4�
3 − 1
6�<	
The amplitude of the current depends on the applied voltage and also on the value of 

the impedance that may depend on the angular frequency. Note also that the current 

phase shift related to the applied voltage depends on the impedance angle. 

1. Problem 

Consider the circuit shown on Figure 1 with the following values � = 2Ω	3 =5?@		6 = 100BC			�!"# = 230E			F = 50@G.  

a) Find the current and the voltages at the terminals of the resistor, coil and 

capacitor. 

b) Plot the phasors of all these variables on Argand plane.  

c) Using the previous results plot the electric power supplied to each element of 

the circuit and to the circuit itself.  

Hints: Note that the electric power is the product of two sinusoidal waveforms, a  

voltage and a current. 

2. Problem  

The RLC serial circuit above is supplied with frequencies in the range [20, 80] Hz.  

a) Plot the amplitude of the current versus frequency.  

b) Plot the phase shift. 

c) Plot the module of the equivalent impedance of the circuit. 

1.2 Active, Reactive and Apparent Power – Complex Power 

The instantaneous power delivered by the supply is calculated by the product of its 

voltage by the current that it is delivered by it as expressions (6) quantifies. In this 

expression one introduces the active power and the reactive power defined by 

expressions (7) and measured, respectively in kW and kVAr units. 
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( ) 2 cos( ) 2 cos( )RMS RMSp t ui U t I tω α ω α ϕ= = + + − 	
[ ]( ) cos( ) 1 cos(2 2 ) sin( ) sin(2 2 )RMS RMS RMS RMSp t U I t U I tϕ ω α ϕ ω α= + + + + 	
[ ]( ) 1 cos(2 2 ) sin(2 2 )p t P t Q tω α ω α= + + + + 	

(6) 

cos( ) sin( )RMS RMS RMS RMSP U I Q U Iϕ ϕ= = 	
(7) 

It is Also common to use the apparent power as the value to RMS RMSS U I= . The value  

H = IJ = 	
�	�K�	
(8) 

is designed by power factor. 

Note that the active power is the average value of the instantaneous power delivered 

by the supply, that is  

I = 1L'M���N
* +O	

(9) 

The reactive power is a simple way to indicate that the current phasor has a phase 

shift relative to the voltage. 

 

Figure 4 – Inductive circuit. 

As an example consider the inductive circuit connected to an AC power supply. The 

equivalent impedance of this circuit (10) shows that the circuit absorbs active and 

reactive power. 

2̅ = 2��P						Q = R�( + �
3�(									K = S�ST	�
3� �	
(10) 
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On Argand plane the current phasor is lagged in relation to voltage phasor. In this 

conditions it is verified that P>0 and Q>0. Figure 5 shows this diagram where it is easy 

to verify that length P is proportional to the active power and length Q is proportional 

to the reactive power. 

0

Q

P

 

Figure 5 – Phasor diagram of an inductive circuit. 

Note that these situations have some drawbacks, as for instance, to supply the same 

active power, one has a larger current in the feeder when there is a smaller power 

factor- cosϕ . This implies that for the same active power supplied, there are larger 

losses in the feeder than there would be with power factor equal to one. To 

compensate large phase delay – large consumption of reactive power – one can put a 

capacitor at the input of the installation. In these cases, one can say that the capacitor 

supplies reactive power that otherwise would be supplied by the mains. Note also that 

the current in the capacitor is ahead of the voltage applied to its terminals. 

Figure 6 shows the steady state regime of an inductive circuit where the current is time 

lagging in relation to the voltage. This means that the circuit consumes reactive power, 

in addition to the active power. 
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Figure 6 – Steady state regime of an inductive circuit. 

Figure 7 presents the time evolution of the instantaneous power delivered to an 

inductive circuit. The double frequency of this waveform and the negative value of the 

power, indicating the reverse direction of the power flow, should be underlined. The 

reverse direction of the power flow in a circuit with only passive elements occurs if 

there are elements that store energy, like the coils or the capacitors. 

 
Figure 7 – Evolution of instantaneous power. Note the negative 

values of the power. 

Sometimes it is practical to join in the same variable the active power and the reactive 

power. This is obtained by introducing the complex power  
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*1
cos( ) sin( )

2
RMS RMS RMS RMS

S E I P jQ E I jE Iϕ ϕ= = + = + 	
(11) 

3. Problem  

a) Determine the active and reactive power of a coil with an inductance L when 

carry a current I. 

b) Determine the active and reactive power of a capacitor with a voltage U at its 

terminals. 

Hints: Use definition of complex power. 

4. Problem 

a) Consider an inductive circuit that absorb an active power P and a reactive 

power Q. Show that the capacitor with the capacitance equal to 

6 = U
.!"#( 	
placed at input terminals totally compensate the cos�K�. That is the voltage and 

current supplied by source have the same phase. 

b) Draw an Argand diagram were are represented the current before and after 

compensation.  

 

Figure 8 – Capacitor placed at input terminals for cos�K�	compensation. 
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2 Three Phases Circuits 

2.1 Voltages and Currents in a Balanced Circuit 

Technical and economic reasons justify the design and the use of three phase systems. 

This happens in most electric machinery, like generators as well as in the transport and 

distribution systems.  

Figure 9 shows a simple three phase circuit with three power supplies, three 

conductors – the phases - connecting the power supplies to the three phase load. 

There is another conductor – the neutral – connecting the node of the loads to the 

node of power supplies. In this study it is important to underline a special and usual 

situation that is the case of a balanced three phase circuit. 

 

Figure 9 – A three phase system. 

In a three phase balanced system, the voltages at power supply have the same 

amplitude, frequency and its phases are lagged in a regular angle of 120º. In this case 

one writes the values of the voltages phasors in power supply as 

1

2 2 /3

2 1

3 1

2
j

RMS

j

E E e

E E a a e

E E a

α

π

=

= =

=

	
(12) 

The loads are represented by a matrix of impedances
1
 and have cycling symmetry that 

it is common in many electric systems
2
, (13). 

1 1

2

1 2

1 3

a b c

c a b

b c a

E Z Z Z I

a E Z Z Z I

aE Z Z Z I

     
     

=     
          

	
(13) 

                                                        
1
 The not null elements out of main diagonal are due, for instance, to magnetic coupling. 

2
 These equations result from KVL law. 
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Simple calculation enables us to verify the following results: 

21

1 2 1 3 12
0

n

a b c

E
I I a I I aI I

Z a Z aZ
= = = =

+ +
	

(14) 

1. Problem 

Demonstrate the previous result.  

Hints: Verify these relations are true 
2

2 1 3 1
I a I I aI= =  and apply the KCL law to one 

node in the circuit. 

The three phase system makes available two different values of voltages: the single 

phase voltage Ej that is a phase to neutral potential difference and the phase to phase 

voltage that is the phase to phase potential difference 

��Z( = ��Z − ��(				��([ = ��( − ��[				��[Z = ��[ − ��Z	
(15) 

2. Problem 

Verify that the relations between the RMS of the phase to phase voltage and single 

phase voltage in a balanced three phase system is equal to 

3
RMS RMS

E E∆ = 	
(16) 

It is interesting to underline that the currents are also a three phase balanced system 

as well as the applied voltages. Besides, the current in the neutral conductor becomes 

equal to zero. In many situations the conductor of the neutral is removed or this 

conductor has a smaller section than the section of the conductors of the phases. 

 

Figure 10 – Delta connection. 
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In Figure 9, three phase load has a common terminal – the neutral – and this kind of 

connection is named star connection. Similar situation occurs at power supply. 

However, the connections may have a different topology. For instance, the Figure 10 

presents the three phase load with delta connection. 

3. Problem 

Consider a balanced three phase system with a delta connected load. Establish the 

relation between the RMS values of the phase and load currents. 

Hints: Consider a cycling symmetry for load impedances matrix and voltages are a 

balanced three phase system. 

 

2.2 Active, Reactive, Apparent Power and Complex Power 

The instantaneous power delivered by the power sources is equal to the sum of the 

power delivered by all phases. So, one writes the following expressions: 

[ ]

[ ]

[ ]

1 1 2 2 3 3

1 1

2 2

3 3

1 cos(2 2 ) sin(2 2 )

1 cos(2 2 4 / 3) sin(2 2 4 / 3)

1 cos(2 2 2 / 3) sin(2 2 2 / 3)

p e i e i e i

p P t Q t

P t Q t

P t Q t

ω α ω α

ω α π ω α π

ω α π ω α π

= + +

= + + + + +

+ + − + + − +

+ + − + + −

	
(17) 

3 cos( )RMS RMSp P E I ϕ= = 	
(18) 

It is important to note that the instantaneous power in the three phase balanced 

system is constant. There are no oscillations; it is therefore a different situation from 

that of single phase circuits. In the three phase circuits, the instantaneous power is 

equal to the active power. 

4. Problem 

Consider an electrical motor as a device that transform electrical energy to the 

mechanical energy. Discuss the performance of a single phase motor versus three 

phase balanced motor in what concerns the mechanical energy, to the torque and to 

the speed. 

Hints: Consider a full efficiency energy conversion and remember that mechanical 

power is given by the expression M� = 
�L. 
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The complex power for a three phase circuit is determined by the expression (19) that 

assumes the form when the system is balanced.  

* * *

1 1 2 2 3 3

1 1 1

2 2 2
S E I E I E I= + + 	

(19) 

3 cos( ) 3 sin( )
RMS RMS RMS RMS

S P jQ E I j E Iϕ ϕ= + = + 	
(20) 

All the phase variables – current and voltage – have the equal waveforms in all phases. 

Only presents different phase shifts. So, it is usual to represent a three phase circuit by 

an equivalent single phase circuit as the one shown on Figure 11. Note that electric 

power in this circuit is only a third part of the total. Besides, the conductor N may not 

exist or may have a different impedance of those of the phase conductors. 

 

Figure 11 – Equivalent single phase circuit of a balanced three 

phase circuit. 

5. Problem 

Consider a balanced three phase system. Show that input single phase impedance may 

be calculated by 

2̅9: = .\(J̅ 	
(21) 


